COD-NETS, BOATS AND MEN

Pétur Kristjánsson
COD-NETS, BOATS AND MEN.
A study of the winter-season fishing on the southwest coast of Iceland.

Seminarieuppsats ET003
Etnologiska Institutionen
Lunds Universitet
Handledare: Orvar Löfgren
VT 1985
Pétur Kristjánsson

MA EJ CITERAS ELLER ANVÅNADAS UTAN
FORFATTARENS SAMTYCKE
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Historical Background</td>
<td>4</td>
</tr>
<tr>
<td>Grindavík</td>
<td>4</td>
</tr>
<tr>
<td>The Winter Season</td>
<td>6</td>
</tr>
<tr>
<td>Cod-nets</td>
<td>7</td>
</tr>
<tr>
<td>The Boats</td>
<td>8</td>
</tr>
<tr>
<td>Disposition of Spaces</td>
<td>9</td>
</tr>
<tr>
<td>The Cod-Nets</td>
<td>12</td>
</tr>
<tr>
<td>Principles</td>
<td>12</td>
</tr>
<tr>
<td>Stationary Equipment</td>
<td>14</td>
</tr>
<tr>
<td>Working the Nets</td>
<td>15</td>
</tr>
<tr>
<td>Work Cycle</td>
<td>15</td>
</tr>
<tr>
<td>Hauling the Nets</td>
<td>16</td>
</tr>
<tr>
<td>Setting the Nets</td>
<td>18</td>
</tr>
<tr>
<td>Rotating Jobs</td>
<td>20</td>
</tr>
<tr>
<td>Social Status and the Constitution of the Crew</td>
<td>24</td>
</tr>
<tr>
<td>Social Relations</td>
<td>26</td>
</tr>
<tr>
<td>Jokes, Storytelling and Speculative Discussion</td>
<td>27</td>
</tr>
<tr>
<td>Jokes and Stories</td>
<td>28</td>
</tr>
<tr>
<td>Information Channels and Social Control</td>
<td>30</td>
</tr>
<tr>
<td>Conclusions</td>
<td>32</td>
</tr>
<tr>
<td>Literature</td>
<td>34</td>
</tr>
<tr>
<td>Appendix</td>
<td>36</td>
</tr>
</tbody>
</table>
INTRODUCTION

Some people associate Iceland with fish and some fish associate Iceland with people. In Iceland, anyhow, these two animals meet quite frequently, especially during the winter season. The winter season is the time for cod-nets. This essay is about the people that partake in the actual fishing during the winter season, - the crews of the boats. The main aim of this study is to give a discursive account of the technique used in the cod-net fishing, the organisation of work on board and the crew's social system.

Different techniques require crews of different sizes, thus provoking certain questions. Where does the extra labour force come from in the beginning of the season, and where does it go to when the season is over? And as the crews vary in size through the year, how can the boats be run year after year? What ensures the continuity of the winter cod-net season? The development of a social system is a long process and must therefore be viewed in its historical context.

The backbone material for this essay is research done by myself during the winter season of 1983. From January 7th to May 15th I was employed on one of these boats, for the first month as a deckhand and for the rest of the time as cook. Besides this I have previous experience as deckhand during the winter season of 1972 and as second engineer during the winter season of 1976. I have also sought to verify much of my material by informal inquiries among fisherman friends and acquaintances. General data on the fishing crews has been taken from crew registration books for 21 boats which were fishing with cod-nets during the winter season of 1984. I had no trouble at all finding myself at home with the crew of the boat I was employed on as I had been to sea before and I believe that they did not view me with suspicion although they were aware that I was collecting data on their everyday environment. At the most, they thought that I was a 'funny cook' always writing things down. The boat's size was 240 tons and had a crew of 12. We set the nets for the first time on January 12 and hauled them for the last time on May 11.

Information about Grindavík and fishing at the beginning of this century is from various published books and from the unpublished notes of Sæmundur Tómasson born 1888, who grew up in Grindavík and was a foreman (skipper) on row-boats there during winter-seasons for the first quarter of this century. These notes are in the custody of the National Museum of Iceland.

HISTORICAL BACKGROUND

Grindavík

Grindavík is situated on the southwest coast of the so-called southern peninsula of Iceland. The present town of Grindavík has evolved from three neighboring hamlets, the
central one being what is now called Grindavík and which
gained superiority due to its geographical setting with
respect to harbour facilities. Cod-fishing has been
practiced from Grindavík for a very long time. Though not
attested in contemporary litterature, it is quite probable
that both the bishop's district of Skálholt, and the
Viðeyjar monastery had ships stationed there in the 13th
century, and in 1753 Grindavík was the only place in the
country where the 'uppsátur' (place where ships are drawn
ashore) was individually appraised (Kristjánsson 1982:38).

Up until the first half of this century the economy was based
on both agriculture and fishing, though the latter was
probably more important. The population of the area was
engaged in agriculture mixed with fishing activities. During
the winter season a considerable number of men came from
other parts of the country to parttake in the winter season,
when all fishing activities were intensified to catch the
migrating cod en route to its spawning grounds. These men
had often been recruited at the end of the previous season.
Once these men arrived they had to be cared for, they had to
have housing and food.

<p>| TABLE 1. | POPULATION GROWTH IN ICELAND 1935-1980 |</p>
<table>
<thead>
<tr>
<th>YEAR</th>
<th>POPULATION</th>
<th>GROWTH</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1935</td>
<td>115 870</td>
<td>14 486</td>
<td>12.5</td>
</tr>
<tr>
<td>1945</td>
<td>130 356</td>
<td>29 124</td>
<td>22.3</td>
</tr>
<tr>
<td>1955</td>
<td>159 480</td>
<td>34 278</td>
<td>21.5</td>
</tr>
<tr>
<td>1965</td>
<td>193 758</td>
<td>25 275</td>
<td>13.0</td>
</tr>
<tr>
<td>1975</td>
<td>219 033</td>
<td>10 154</td>
<td>4.6</td>
</tr>
<tr>
<td>1980</td>
<td>229 187 (NB 5.Years)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| TABLE 2. | POPULATION GROWTH IN GRINDAVÍK 1935-1980 |</p>
<table>
<thead>
<tr>
<th>YEAR</th>
<th>POPULATION</th>
<th>GROWTH</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1935</td>
<td>577</td>
<td>- 88</td>
<td>-15.3</td>
</tr>
<tr>
<td>1945</td>
<td>489</td>
<td>138</td>
<td>28.2</td>
</tr>
<tr>
<td>1955</td>
<td>627</td>
<td>293</td>
<td>46.7</td>
</tr>
<tr>
<td>1965</td>
<td>920</td>
<td>749</td>
<td>81.4</td>
</tr>
<tr>
<td>1975</td>
<td>1669</td>
<td>260</td>
<td>15.6</td>
</tr>
<tr>
<td>1980</td>
<td>1929 (NB 5.Years)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| TABLE 3. | DIFFERENCE BETWEEN POPULATION GROWTH IN GRINDAVÍK AND ICELAND 1935-1980 |</p>
<table>
<thead>
<tr>
<th>GRINDAVÍK %</th>
<th>ICELAND %</th>
<th>DIFFERENCE %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1935-45</td>
<td>-15.3</td>
<td>12.5</td>
</tr>
<tr>
<td>1945-55</td>
<td>28.2</td>
<td>22.3</td>
</tr>
<tr>
<td>1955-65</td>
<td>46.7</td>
<td>21.7</td>
</tr>
<tr>
<td>1965-75</td>
<td>81.4</td>
<td>13.0</td>
</tr>
<tr>
<td>1975-80</td>
<td>15.6</td>
<td>4.6</td>
</tr>
</tbody>
</table>

(Source: Statistical Bureau of Iceland, and Gunnararsson
1981.)
As the boats at that time were only fishing vessels, accomodations ashore had to be obtained. The 'season-men' were housed and received domestic services from the native population and were thus incorporated into the household based economy of the period. (Sæmundur) The main product of Grindavik's fishing activities was a very valuable one, stockfish. Until 1926 all fishing from Grindavik was done with row-boats with a crew of 11 men (Gunnarsson 1981 and Sæmundur). In the year 1926 the first motor was installed in a boat from Grindavik and two years later all of the boats had motors. (Gunnarsson 1981) The absence of a satisfactory harbour limited the boat size as they had to be taken ashore after each tour. During the first years of this century, winches were installed to haul the boats ashore. They were later improved and used to haul the motorboats and deckboats. The first pier was built in 1919 but the boats still had to be put ashore. During the fourth decade of this century there was a decline in the population of the village due to the lack of suitable harbour conditions and because employment was available elsewhere after the arrival of the British occupation troops. (Table 1-3) Around 1945 improvements on the harbour and pier finally made Grindavik a feasible setting for modern fishing and it is now one of the largest producers of fish in the country (Gunnarsson 1981).

The winter season

'Traditionally', the winter season is from the second or third day of February to about the middle of May.

The 1983 Almanac of The University of Iceland tells us that the winter season begins on the third day of February and

<table>
<thead>
<tr>
<th>TABLE 4.</th>
<th>COD CATCH IN GRINDAVIK 1980</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IN THOUSANDS OF TONS</td>
</tr>
<tr>
<td>JAN.</td>
<td>0.6</td>
</tr>
<tr>
<td>FEB.</td>
<td>3.1</td>
</tr>
<tr>
<td>MARCH</td>
<td>8.6</td>
</tr>
<tr>
<td>APRIL</td>
<td>7.6</td>
</tr>
<tr>
<td>MAY</td>
<td>1.5</td>
</tr>
<tr>
<td>JUNE</td>
<td>0.7</td>
</tr>
<tr>
<td>JULY</td>
<td>0.2</td>
</tr>
<tr>
<td>AUG.</td>
<td>0.1</td>
</tr>
<tr>
<td>SEPT.</td>
<td>0.1</td>
</tr>
<tr>
<td>OCT.</td>
<td>0.05</td>
</tr>
<tr>
<td>NOV.</td>
<td>0.1</td>
</tr>
<tr>
<td>DEC.</td>
<td>0.1</td>
</tr>
</tbody>
</table>

ends on the eleventh day of May. A summary in Mgrí about the winter season of 1918 reports, "Up until this time it has been stated in the almanac, when the seasons are considered to begin and when to end. The winter season in the south (of Iceland) is considered to begin on Candlemass (Feb. 2). Then the fishermen should have arrived to their boats and that is how it still is in the question of open row-boats, but their number has decreased so much during the last two decades that they are now only a small minority and employment on boats less bound to a certain day. The majority of fishing boats
are now propelled by engines and they start the season as soon as there is any hope that fish have come to the fishing grounds and the winter season here in the south can be considered to start on the first day after new-year that the weather is fine enough to go fishing." (Mágir 1918:6:85) The winter season is economically the most important time of the year. Table 4. shows the catch in Grindavik during the different months of 1980. The cod-fish catch is by far the greatest from February through May.

Cod-nets

Cod-nets seem to have been controversial from the very beginning. A pamphlet which argues for the continued use of cod-nets was published in 1892 by "Some men in Reykjavik and on Seltjarnanes". It mentions the introduction of cod-nets to the Icelanders. Quoting a book by Magnúss konferensráð Stephensen, in which Magnúss is pleading against the use of cod-nets, it states that; "Skúli treasurer Magnusson was the first to teach the people to use cod-nets. In the year 1752 he brought some nets here from 'Sunnmørei' (an area south of Alesund in Norway) and got fishermen in Hafnafjörð to use them, even though they did not, after all, prove to be as useful to the country as was expected at that time and until experience gave reason to doubt their usefulness."

The arguments against the use of cod-nets where mainly constructed around the point of view that they were too expensive for the farmers to buy and maintain, and the idea that they not only stopped the migrating fish but also scared and diverged the fish away from the traditional grounds for hook-fishing. Thus those which were poorer would be loosing because others would be catching the fish that the poor would have caught otherwise. On these grounds the Danish Crown issued orders regulating the use of cod-nets, restricting it to certain times and areas (e.g. Lagsamling for Island April 8, 1762 & Sept. 18. 1793).

Magnúss Stephensen also mentions in his book from 1808 that the farmers feel themselves compelled to take up cod-nets. Otherwise "they will not be able to employ seamen on their boats, and besides that, they have to pay exorbitant prices, as each offers more than others in sheer blindness. But the hope for the profitable catch usually fails and the expensive seamen that risk nothing and invest nothing but their own work are the ones that gain the most, whatever the results, and they are the only ones that profit if the results are good." (Nokkrir Menn 1892:12)

The farmers thought of the landless workers as belongings in much the same way as production tools are belongings and not as a commodity to be sold to the highest bidder. Until about 1893, laws providing for compulsory farm bonds were in force and the liberation of these laws was strongly opposed by the farmers. (Sigmund Jónsson 1981:108) The farmers were practising a sort of mixed economy and the capital needed for nets was not readily available, as much of
the capital must also have been secured in the agrarian sector. Besides this, the intensification of labour needed to repay the capital costs of nets would mean a loss of labour power from the farms.

But protests were of no avail; cod-nets were here to stay. Although the cod-nets were generally accepted in the area around Hafnafjörð, it took a hundred and fifty years for this new technology to travel the 40 kilometers across the southern peninsula to Grindavík. On the south coast people said that "it was unthinkable that they (cod-nets) would ever be used south of Reykjanes because the current and condition of the sea was much rougher and the cod-nets would be torn away or ruined in this heavy sea." (Sæmundur) This was proved wrong in 1905 when the contribution of half a cod-net, fifteen fathoms long and 15 meshes deep, was placed as a condition to obtain a share.

THE BOATS

The boats used in the modern cod-net fishery of today's Grindavík vary greatly in size. They can be anywhere from small wooden boats of 10 tons with a crew of 2-3 men to ultra-modern 300 ton boats with crews of 11-14 men. This essay is only concerned with boats of the larger type. These are the boats carrying 'full crews'. Basically it can be said that these boats are the ones larger than 100 tons. Boats of this size are a considerable investment and must be productive for as great a part of the year as possible. Outside of the winter season they are used for trawling, longline or, as the largest ones, for capelin fishing with purse seines. These other fishing techniques often overlap into the winter season, but by the beginning of March it may be said that most, if not all of the boats have changed over to cod-nets.

Cod-nets seem to have been controversial from the very beginning. A pamphlet which argues for the continued use of cod-nets was published in 1892 by "Some men in Reykjavík and

The boats used in the modern cod-net fishery of today's Grindavík vary greatly in size. They can be anywhere from small wooden boats of 10 tons with a crew of 2-3 men to ultra-modern 300 ton boats with crews of 11-14 men. This essay is only concerned with boats of the larger type. These are the boats carrying 'full crews'. Basically it can be said that these boats are the ones larger than 100 tons. Boats of this size are a considerable investment and must be productive for as great a part of the year as possible. Outside of the winter season they are used for trawling, longline or, as the largest ones, for capelin fishing with purse seines. These other fishing techniques often overlap into the winter season, but by the beginning of March it may be said that most, if not all of the boats have changed over to cod-nets.
Disposition of spaces

Although there are some variations, the boats have, in general, the same disposition of spaces. There are three levels: - the upper level, with the bridge, skipper's cabin, chartroom, poop-deck and, on closed boats, the upper deck. - the middle level, where most of the work is done, with the 'case' or 'whaleback' in the bow, the 'deck' (work-deck), behind that two 'hallways, one on each side and in between them the galley and the mess-room, a WC and maybe a shower. - and finally the lower level, with the crew's living quarters, the hold and the engine room.

1. The Bridge. This is where the controls for maneuvering the boat, the electronic fishfinding equipment and equipment for navigation and communications are situated. The boats have auto-pilots, high seas radios, VHF marine radios and CB radios. The marine band is always on when the boat is at sea and some boats have scanners so that they can 'catch' any conversation going on. Most of the conversation on these radios is between skippers. All of the boats have radar, Loran C position finders, depth sounders, electronic fishfinding equipment and some have instruments to measure outside air temperature and sea temperature. On the closed boats the bridge also has video screens to view the work on deck and intercom systems to communicate with the deck crew.

2. The Skipper's Cabin. This cabin is usually behind the bridge. It is the largest, most comfortable cabin with a large bed, a sink, a couch (bench), a writing table and many closets.

3. The Kitchen and Galley. This is the cook's domain. The kitchen is equipped with all the same comforts as a
kitchen ashore. The mess-room is usually in front of the kitchen, adjoining the work-deck. Here, the crew eat their meals, drink their coffee and wait for the next 'action' or just laze about. The mess-rooms are usually rather small and have just enough space for the whole crew to sit around the tables at the same time.

4. The Hold. This is where the fish are stored.

5. The Work-deck. Here the 'actual' fishing process takes place. On the closed boats this space resembles a fish factory ashore; the fluorescent lighting and the recurring routines. While working 'out on deck', as it is called, the crew cannot see its skipper and as there aren't any openings except for the hatch through which the nets are hauled, they cannot see the surroundings, other boats and so on. On the older open boats the crew can often see other boats and shows interest in whether they are catching fish, what they are doing now and so forth.

Farthest to the back of this space the nets are piled, usually on the port side. From the front starboard side where the hauling hatch is situated, the net-table runs to the middle and over the hatch to the back. On the wall at the back an opening gives access to the hall way alongside the galley, where the crew keep their watertight clothes and boots. On the other side there is the hall way where the engineer has his 'workshop', welding equipment, tools and spare parts.

6. The space in the bow is called 'upp front' (fram í) or, when being more specific, 'fram í hvalbak' or 'fram í keis' (hvalbak = whale back, keis = case). Here all sorts of tools and accessory equipment for the fishing gear are kept. Often a toilet facility with a shower is in this space and access to the deckhands cabins is from here. On the older open boats this 'whale's-back gives shelter to the men while the boat is being driven to the next string or to a location where the nets will be set.

7. The Deckhands Living Quarters. This is the most uncomfortable part of the boat, or at least, the part which moves the most. The shape of the bow makes this space inconvenient for labour processes or storage of fish (which would also make the boat heavy in front). The cabins in front are made for 2-6 men in various combinations. In them the double bunked beds are not very large. In fact it is better to have them rather narrow with high sideboards so that the occupants can brace themselves when the movement of the boat calls for it. Each cabin has a small table and a bench large enough for all of the occupants to sit on at the same time, a closet for each man, a light in the ceiling and a reading light at the head of each bed. There are usually no sinks in the cabins up front, but one or two common sinks above in the 'whale-back'.
8. 'Officer's' Quarters. On the lower level farthest to the back, the cook, mates and engineers have their cabins. Here the movement of the boat is not as great as up front, but the noise from the propeller shaft and propeller is quite noticeable. These cabins have sinks and tend to be a little 'roomier' the ones up front. The first mate and the chief engineer have private cabins here while the others share cabins for 2-4 men. Here men have 'direct' access to their cabins once they are inside, i.e. they can go to and from the galley, mess-room, engine room and bridge without going 'outside'. This advantage is especially pronounced on the open boats. Even though there may be a bed or two vacant in these cabins, they are not occupied by the deckhands.

9. Upper Deck. The main purpose of this deck is to serve as a roof for the work deck. This deck obstructs the skipper's view of the crew and visa versa. It is a major change in the fishermen's environment as they do not any longer have to work in the previous conditions of extreme wetness. It also obstructs their view of the outside surroundings. The upper deck is considered to have increased safety, both to the crew and the fishing gear.

10. The Engine Room. This is where the engines and accessories are; the steering gear, main engine, auxiliary engines, hydraulic systems, pumps and etc. The chief engineer and assistent are the only men that go 'down in the engine', though sometimes others may go there just to 'have a peep'.
THE COD-NETS

Principles

The principles of stationary gillnet fishing are as follows: The nets are anchored to the sea-bottom with a weighted rope to which the lower part of the netting is fixed. A number of nets (in Iceland 15-20) are tied together to form what is called a string. The string is secured to the bottom at each end with anchors (here called 'dragons') for extra stability. The upper part of the netting is secured to a buoyant rope thus keeping the net open, (i.e. forming a 'wall') The mesh-size of the netting is decided with respect to the size of fish to be caught. When the fish approach the nets some are not small enough to swim through the meshes and try to back out again, thus getting their gills caught in the mesh.

Gear

Dragon: The dragon is a metal anchor with a heavy chain on the 'top' and four 'claws' on the bottom. The dragon is to hold the nets in place on the seabottom. Current regulations state that the registration number of the fishing boat must be welded onto the dragon.

Lower rope: The netting is fixed to the lower rope. Until newly, this rope has been weighted with stones made of cement. Ropes weighted with lead inside are becoming more and more popular and making the use of stones obsolete.

Schematic drawing of stationary gill-nets
The upper rope: The upper rope must have have some sort of buoyancy to keep the net open. The term 'ballrope' (kúluteinn) is still frequently used. This name is derived from the glass balls contained in small 'netbags' that used to be used as floats. These became obsolete after the introduction of rings during the sixth decade of this century. Now the rings are also losing their place in the Icelandic fishing technology as the new floatrope gains popularity (a rope that encloses a bouyant polyurethane).

The floatrope and the leaden rope have obvious qualities. There are no (protruding) objects hanging from the ropes which can tangle in the netting. There are no stones to throw overboard and no rings to entangle in the netting when nets are being set. And no stones or rings need to be untangled from the netting when the nets are being hauled. Thus these innovations are both productive and time saving.

Handles (hankar): These are small loops of rope spliced into a circle. They are stuck through holes in the stones or rings and pulled through the loop at the other end (through themselves). To connect the stones and rings to the nets a loop is made on the stonerope or ringrope and stuck through the handle after which the stone or ring is put through the loop on the rope.

The tail is a rather short, thick rope. One end is tied to the end net of a string. The other end has two spliced loops. One loop is tied to the line and the other loop is connected to the dragon's chain with a shackle.

The line connects the tail to the bellylines and buoy.

Buoys are the uppermost end of the string. They are made of plastic bellies with a hole through the middle. Through the hole a bamboo, or more modern, plastic pole is placed and secured. The lower end is weighted down to keep the pole upright and at the top two flags are secured. One is to designate the boat that owns the string and the other is to tell the owner which one of his strings is down there. A ring is also placed on the buoy at the western end of the string so that others can see the string's direction.

Bellies are tied to bellylines which in turn are tied to the line.

Breasts are at each end of each net. They are spliced to the lower and upper ropes. The breasts reinforce and secure the distance between the upper and lower ropes.

Strings are made of 15 to 20 nets, each net is 60 fathoms long. The nets are tied together with weaver knots, floatrope to floatrope and stonerope to stonerope. At the ends of each string the stonerope is tied to the tail and to rings are tied to the loose end of the floatrope.
Tools: To untangle the fish the fishermen use small gaffs (goggar). A longer gaff is used by the man standing by the roller. With it, he can catch fish that are about to fall from the net and 'help' them aboard. He also uses the gaff to keep the fish from getting smashed between the ropes.

The boathook (haki) is used to retrieve the buoy and to catch fish which have fallen from the net. (It used to retrieve anything that needs to be retrieved from the sea.)

Knifes are of the 'bleeding type' (or flattening type).

Bleeding knife Gaff

Boathook

Stationary equipment:

Net roller: One roller parallel to the side of the boat. Two smaller rollers are perpendicular to it. The roller, when in use, is positioned so as to create a small overhang from the bulwark. This is done so the net can be hauled from the sea without being dragged against the side of the boat. The main roller minimizes friction and the smaller rollers make sure that the net can not escape from the roller to the back or the front. From the roller, the net travels to the winch. The winch is of a horizontal disk type. Two disks are placed in such a manner that they can gain traction on the stonerope coming from the roller. The net is pulled off the winch after having traveled approx. 90 degrees. The 'pulling off' is done by a 'haulingman'. The 'haulingman' is a device with two rubber rollers that grasp the netting and ropes and pull them off of the winch. The rollers are flexible so that fish and stones can run between them.

Work clothes: Low rubber boots, vinyl pants and vinyl anorak. Thick rubber finger gloves.
WORKING THE NETS

Work Cycle

The daily work cycle is formed by a recurring chain of events and actions. (Thus the actions of the actors can be described.) The first link in this chain of action is the chief engineer. He must start the main engine and make sure that it is ready for use at the announced time of departure. As this is usually somewhere near the small hours, the rest of the crew is usually asleep. (The skipper relies completely on the chief in all matters concerning the engine and related matters.) The skipper and chief engineer then untie the boat. If the situation calls for it, they might wake up some more members of the crew, but this is only done if necessity calls for it (i.e. high winds, hard current, many boats tied to the outside of the boat). Next, all the lights inside the bridge and on deck are turned off and the skipper steers his vessel towards the open sea, away from the harbour and out into the dark.

The route that gives access to the harbour of Grindavik is considered especially dangerous when winds are southwesterly and the sea breaks heavily on the rocks and reefs surrounding the route. Small navigational errors or technical faults have caused damage to boats and loss of lives. Sometimes the harbour becomes inaccessible during bad weather.

After about 15 minutes sailing distance from Grindavik, a straight course can be taken to the fishing grounds. Prevailing custom is that sailing to the fishing grounds is done by the skipper and chief engineer, though the skippers seem to have a growing tendency to hire second mates to relieve themselves of this duty. It may take anywhere from half an hour to six hours to reach the fishing grounds. (Longer sailing times exist, but they are unusual and very unpopular.)

About an hour before arrival at the first buoy, the men on watch wake the cook so that he can get breakfast ready. He in turn, having done so, awakes the rest of the crew, often waking the skipper a little before the others. One of the obligations of the cooks is to awaken the rest of the crew as late as possible, yet early enough to allow the crew to finish eating breakfast before the first 'dragon is upp'. Anyone late will miss breakfast, as the group solidarity will not allow other members to be 'inside' while hauling is going on. When the call - 'buoy' is given, the crew members that 'own the buoy' (i.e. are supposed to retrieve it from the sea) must immediately and unconditionally 'don their dress' and be ready to take the buoy as soon as possible. It is considered 'bad' to miss the buoy and very irritating for the skipper, as he must then 'make a circle' and remanoeuvre the boat into position.
Hauling the nets:

The deckhands grab the buoy and take it aboard. One controls the winch, while the other one places the buoy and bellies in their right places and then coils up the lead. When the dragon comes up, the man at the winch calls out 'drekinn', which means that by now everyone should be on deck. The dragon is placed on the side where the net is to be laid down (usually portside). The 'tail' is heaved in and the net has 'come up'.

Hauling the nets

The man standing closest to the bow is 'at the roller' with a long gaff (gogg), in his hand or placed within convenient reach. He makes sure that the ringrope is running in front of the 'stonerope', on the winch and informs the captain if the net is running under the boat (or to far front, back or away from the boat). He also controls the speed of the winch and keeps a good eye on the net as it comes out from the sea. He must also 'help' fish from falling from the net and make sure that they don't get smashed. On the 3 boats that I have worked on, this position was mostly occupied by the first mate. The men next behind him are to keep the ropes clear of the netting and untangle as many fish as they can manage. They do not always have gaffs in their hands but keep them somewhere nearby. The others untangle fish, stones and rings. It is their duty to try to make sure that the stones and rings are completely ready for laying down. The last two men lay down the ring, ringrope and net and the stones, stonerope and net. They must keep a watchful eye (along with everyone else) on knots and splices and make sure that they are carefully covered so that they will not become entangled in the netting when the nets are being laid. The knots, with which the nets are tied to each other, are kept near to the bulwark so that they will not be dragged over the nets when they are being laid. Bones and bits of coral are very dangerous and always removed from the nets.

Net hauling is continuous. During hauling, no member of the regular deck crew leaves the deck nor takes a rest. It
usually takes from half an hour to one hour to haul each string, but can take more or less time, depending on conditions.

During hauling, lots of joking goes on, mostly about how slow someone is doing his job, or something about the cook or the skipper. If somebody is slow untangling the fish, he might be mocked, "Hey, the fish is laughing at you", and sometimes the men farther aft will yank the net from those in front saying "Why are you hanging in the nets, aren't we going to haul them? And if the man farthest to the aft can't keep up, he could hear something like, "Hey look he's fallen asleep in the rings". The main theme in hauling is to keep on hauling as fast as possible. The high co-ordination of the crew contains a flexibility, so that if some member is having trouble with his task, he will be helped by others, everyone does as much as he can to keep the hauling going.

When the last net of the string is aboard, the question must be answered, whether to haul the line or not. If the fleet is to be set again, ('on the same'), the line is loosened from the tail, taken around the outside of the boat, and tied on again. This saves time and work (the line is anywhere from 30 to 300 fathoms long). If the skipper decides that he would like to haul next, a piece of old seine net or cloth is placed over the netpile to isolate it from the next string. The line is hauled in, coiled up and the buoy and bellies placed in their right places. None of the deckhands leave the deck until all of the fish have been bleded and everything is ready for the next 'action'.

Bleeding is done with a bleeding knife ('blóðgunarhňífur'). The cod is held in a vertical position with a thumb under the jawbone and other fingers behind the fish's head (though some prefer to have their forefinger in the cod's eye). The lower part of the head is thrust forward and the exposed throat is cut, taking care to sever all of the blood vessels. Black pollack is cut in much the same way, though many prefer to hold the fish with their fingers bent inside it's mouth, as the fish does not have the sharp teeth of the cod.
Bleeding cod (Joensen 1975:85)

Bleed fish are classified into three different parts of the hold, live bleded cod, dead bleded cod and other fish (mostly black pollack or coal fish). The classification is done by the person bleeding the fish. The difference between dead-bleded cod and live-bleded cod is determined by the color and condition of the gills. A fish that moves is alive.

Setting the nets:

When the skipper has decided to set the nets, he tells the crew, and those who 'own the setting' that day get the string ready. The buoys are marked according to the skippers orders. The first buoy is made ready to go and the line placed where it can run out safely, usually physically removed from other ropes and where it can be easily observed. This is done for practical reasons and for safety.

Setting the nets is the most dangerous activity in net fishing. It is also the activity that is supposed to decide the results. Nets that are not set correctly will not catch fish. One mesh that gets tangled in the wrong place may prove to be the cause of great trouble. Some years ago I saw what can happen if something goes wrong; The incident occurred during bad weather. A rope somehow managed to catch on to a wrong dragon while running out. The wrong dragon belonged to the third or fourth net-string underneath the one being set. It was pulled aft along the bulwark along with all the other dragons. Their chains became tangled in the mesh and we were about to see all of our fishing gear go overboard in one great heap. (which would probably have been irretrievable because of its weight). But, in an act of daring, the first mate jumped up unto the netpile and cut the rope with one knife-stroke. (thus breaking rule number one: never go onto the netpile when nets are being set) This all happened during a period of maybe one minute.

The first dragon is placed at the location from which it is to be thrown into the sea. The skipper gives orders when to let the buoy go and whether to 'tie it' or not. If it is to be tied, a loop is taken on the line and wrapped around something strong enough to hold it (there is considerable tension when the boat is dragging the bellies, buoy and line). When the skipper has the boat in position, he says 'let it go'. The line is released and the dragon thrown into the sea.
Nets are set from a travelling boat. As the nets run out, the stones must be thrown overboard in the right sequence (of course).

"My' boat, being closed and having it's opening at the top, presented a problem in the stone throwing. Throwing the stones to early might get them entangled in the netting, and throwing them to late meant that they would be yanked out of control and tangle with the following net. But the timing was difficult, as one could not see the net outside. When I asked the skipper why he had the stones put on, he replied - "Oh I don't know, I kind of like them and think I would feel uneasy not seeing any stones at all. Maybe the nets would drift more if there weren't any."

During the season I heard stories about some captain or another that used 2 stones or 1 stone (per net) and that some used no stones at all. We also hears some diffuse story about some sort of ramp which was installed so that the stones could slide along it, overboard. The skipper had a ramp of this type made and installed, but it proved unsatisfactory and was removed after a short existence. One year later (1984) this captain was using no stones at all. I checked almost all of the larger boats during the easter vacation 1984 and found that out of 19 boats ten were using no stones at all and the others were using only a few.

While the nets are running out, someone puts the latter dragon in it's right place and gets the line, bellies and bouy ready to go. When the last net of the string is overboard, the latter dragon is thrown into the sea, the line runs out and finally the bellies and the bouy are cast out to enable these land animals in their metal vessel to keep in contact and control of their extension in the depths of the sea.

When the hauling and setting is over and the deck has been cleaned, the boat is headed for shore. The first mate takes command of the vessel and the second engine takes over the duty of watching over the engines. On the way to port the first mate calls ashore and reports how many trucks he needs to land the catch, and orders gear replacements and if necessary spare parts or oil for the engineer. He may use a 'code' to report the size of the catch. The rest of the crew can do as they please. Often they go to their
cabin to read or sleep. Sometimes they just laze around in the galley or bridge, talking or playing cards or chess, or watching TV. The cook often cleans up and makes preparations for tomorrow's meals.

ROTATING JOBS

Certain jobs do not require the presence of the whole crew. By rotating these jobs the crew can maximize its leisure time. By 'rotating jobs', I mean that the same jobs are occupied by different men or groups of men, in sequence. Those doing the job each time are doing it because it is their turn to do it. There are three different work situations which rotation of jobs is applied to—net-setting, buoy-retrieving and landing the catch.

Net-setting:

Net setting is done by the deckhands, first and second mates, and second engineer. They are divided into two groups. Each group has the same duties, but only for one day at a time. After the nets have been hauled, and the fish bled and the skipper has decided to set the nets next, the group which does not 'own the setting' has time off. The length of this time depends on how many strings are to be set, how far it is to the place where they will be set and various other factors. If the skipper has heard about better fishing elsewhere he may want to go there. Sometimes, if the catch hasn't been good lately he might 'go looking', sailing to some new grounds or to some place were he has reason to believe that fish may be found. This leisure time is welcomed by those receiving it.

Buoy-retrieving:

The participants of these groups are— the deckhands, the second mate and the second engineer. Each group is a pair of men. They take turns, one pair at a time, retrieving the buoy, and coiling up the line, and until the net has reached the surface, the rest of the crew can take it easy. The duty of buoy-retrieving rotates in the same succession throughout the whole season—so each man, hypothetically at least, will retrieve exactly as many buoys as the next.

Membership in these groups is institutionalised to the extent that when they are formed at the beginning of the season, only certain crew members can (and must) belong to them, but the allocation into different groups is random, though possibly based on friendship, peer group factors and so on.

On arrival to port, the boat must be tied, old outcast nets put ashore, new ones taken aboard and made ready, the catch must be landed and the boat cleaned. This is done by the deckhands, second engineer and second mate. The first mate is usually nearby attending to some odd jobs or looking
on and chatting with the captain, cook or others that happen by. The second engineer controls the winch used to haul the catch ashore onto the waiting truck. Other jobs in the 'landing phase' are: Two or three (as the first mate often participates) men tie the boat. One of these men then goes and stands on the truck to open the container used to heave the fish and the other one stands by the hatch and steers the container up from the hold.

Two men put the old outcast nets ashore and take new ones aboard and make them ready. Three men go down into the hold to put the fish into the landing container and clean the hold. There was no conciously expressed distribution of these jobs, but after observing the landing process for weeks and trying to find some sort of system I noticed that two things were evident. Men belonging to the same pair when retrieving the buoys never paired together in the landing and men never did the same job twice in a row (with a few exceptions). The distribution of these jobs was always a sort of last minute decision taken by the crew: "I'll tie up today"-"Okay I'll come with you"-"Then we take the nets" etc. Could this systematic 'unsystem' be a safety valve to relieve the crew from becoming to bored of each other?

This rotation of jobs may seem rather trivial at first look but it is a an integrated part of the work at sea and serves to concentrate the fishermen's time into leisure time and work time thus making life more bearable in an environment where leisure and sleep are highly valued. Figures 1 and 2 show how the system serves this purpose. Actual worktime is most accurately comparable among the deckhands (F1-F6) as they all have exactly the same obligations and duties. The difference in actual work-time among them can be up to 2 hours in one day. (Appendix A, fig.2 March 28 1983) Another advantage that this system gives can be seen in fig.2 (March 29 1983) where fishermen F2-F5 have 3 1/2 hours uninterrupted leisure time (good for sleeping). The total actual labour time is shown in table 5. Given that the sample period is representative (why not?), this shows that the system works to concentrate each
(participating) man's time into leisure time and work-time and still distributes these relatively evenly to each.

Table 5 shows that there is at least some fairness in the distribution of of pay with relation to work hours (given that the sample period is representative). A deckhand's share (1) is approx. equal to an average of 45 hours work. The average number of work hours for 1 1/4 share is 55, which is a little more than 1/4 more. The average for 1 1/2 shares is approx. 60 hours, which is 1/3 more. The skipper works 68 hours for 2 shares, which is about 1/2 more than a deckhand does. The share system may well be a contributing factor to the dominating egalitarianism aboard. The crew receives 31% of the total catch value. These 31% are divided equally among the crew. The extra shares, paid to the 'officers', are paid by the boat owner. Thus each crewmember gets an even share of what belongs to the crew.

TABLE 5:
TOTAL ACTUAL WORK HOURS SIX DAYS.

<table>
<thead>
<tr>
<th>Role</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKIPPER (*)</td>
<td>68:00</td>
</tr>
<tr>
<td>FIRST ENGINEER (M1):</td>
<td>68:20</td>
</tr>
<tr>
<td>SECOND ENGINEER (M2):</td>
<td>51:55</td>
</tr>
<tr>
<td>FIRST MATE (S1):</td>
<td>50:55</td>
</tr>
<tr>
<td>SECOND MATE (S2):</td>
<td>53:55</td>
</tr>
<tr>
<td>COOK (Kn):</td>
<td>58:05</td>
</tr>
<tr>
<td>DECKHANDS:</td>
<td></td>
</tr>
<tr>
<td>(F1):</td>
<td>44:00</td>
</tr>
<tr>
<td>(F2):</td>
<td>45:20</td>
</tr>
<tr>
<td>(F3):</td>
<td>44:40</td>
</tr>
<tr>
<td>(F4):</td>
<td>45:55</td>
</tr>
<tr>
<td>(F5):</td>
<td>45:55</td>
</tr>
<tr>
<td>(F6):</td>
<td>43:15</td>
</tr>
</tbody>
</table>

There is reason to mention another type of job rotation, mainly because it was not applied on 'my' boat. Up until very recently the job of 'hauling off' of the winch, that is pulling the nets off the winch which hauls them to the surface, was done by hand. During the winter season of 1983 many boats had so-called 'haulingmen' installed. The haulingman is a device which totally overtakes this job. In fact it overtakes this job so completely that government regulations stipulating the number of nets allowed to each boat with respect to crew size, allows the same number of nets to the 'haulingman' as to each crew member. The job of 'hauling off' was considered very toilsome, besides being dangerous, and my former experience was that this job rotated evenly among the deck crew (with the exception of the first mate). After observing possible rotations among the crew during hauling, I found that no systematic rotation occurred.

22
Further inquiries prompt me to believe that the 'haulingman' is responsible for the desertion of this type of job rotation:

One evening while hitch-hiking to Reykjavík I was picked up by a man who told me the following story: "Before I quit the sea, a couple of years ago, there were mostly two or three men that would take turns 'hauling off' the winch. I didn't like that very much, I liked it more like it was before that, when each man had to take his turn 'hauling off'. The duty rotated."

When I asked 3 crewmembers of the Sandafell if they changed duties a lot, they told me that they changed around a bit, "but he (second engineer) and myself (first mate) are usually behind the 'haulingman' keeping the ropes clear. Before, everybody used to take turns 'hauling off', so there was more circulation....The first engineer is very seldom on deck and the cook never comes out on deck."

A crewmember from Albert: "We take even turns 'hauling off'. The company has bought a 'haulingman' which is to be installed during the easter pause......The first engineer is often on deck but the cook never comes out."

I inspected 19 out of 23 (4 were locked) season-boats while they were laying in the harbour during the easter stop of 1984 and found that they were all using 'haulingmen'. This inspection also gave reason to believe that other jobs have been or are being eliminated. Out of the 19 boats, 10 were not using any stones at all, 8 were using very few and only one used what may be called a 'normal' amount for the 'stone technique'. Eight of the boats were using no rings at all and most of the other ones were using rather few. Only one was using what may be called a 'normal amount'. The elimination of stones and rings will of course reduce the amount of labour needed for hauling the nets as a considerable amount of labour has been used to untangle the stones and rings from the netting, take them off and put them on the nets, lay them down etc.

There are other jobs that change occupants, but these changes are in relation to certain activities. When the boat is headed from port to the fishing grounds, it is steered by the captain (or second mate when employed) accompanied by the first engineer and when it is headed for port again the steering is done by the first mate accompanied by the second engineer. These jobs are considered to be done on the basis of institutionalised roles and not because those doing them 'happened' to be in the group whose turn it is to do them.
SOCIAL STATUS AND THE CONSTITUTION OF THE CREW

The social status of the crew may be related to several different factors: authority, residence, age, experience, living quarters, work quarters, degree of specialization and wages. The skipper is the highest authority on board, he lives in the most luxurious cabin, he is among the oldest, his job is highly specialized (and takes years to learn) and he has the highest pay—two shares. Only two skippers out of 21 were residents of other localities than Grindavik.

The first mate is the second in command, his cabin is in the same 'class' as the first engineer's (single) in the stern, his job is quite specialized (same requirements as skipper), and he is among the oldest. Thirteen out of 21 first mates were from Grindavik. A first mate receives one and a half share. The first (chief) engineer is the highest authority in matters having to do with the engine and mechanical systems. His work quarters are mostly inside and his work cannot be seen as physically strenuous (in relation to other crew members). This may explain the relatively high age of some individuals within the occupation (see table 6). His job is highly specialized and it takes years of schooling to gain authorization to work on the larger boats. The first engineer's living quarters and wages are usually the same type as the first mate's and may both be seen as the second best aboard. Out of 21 first engineers, 17 were from Grindavik.

All of the boats must, by law, have second engineers. Much like the second mate, the second engineer must do everything that a regular deckhand does, besides having to be on machine-room duty during the trip home and controlling the landing gear when the catch is put ashore. Here to, I prefer to view the role of second engineer, though not primarily, as an extra reward for a good deckhand. 15 out of 21 second engineers were from the Grindavik area and were noticeably young. Second engineers may share a cabin with the cook and/or second mate and receive the same wages as they do (1 and 1/4 share).

The cook is the master of the "domestic" area. He must prepare meals, wash dishes, order food, clean the galley, bridge, toilets and see to the "domestic" needs of the crew. (This includes providing sewing thread, needles, matches and so on.) His living quarters are in the same class as the second engineer's and second mate's. He also receives the same wages they do (1 1/4 share). Nine of the cooks

All of the boats must, by law, have second engineers. Much like the second mate, the second engineer must do everything that a regular deckhand does, besides having to be on machine-room duty during the trip home and controlling the landing gear when the catch is put ashore. Here to, I prefer to view the role of second engineer, though not primarily, as an extra reward for a good deckhand. 15 out of 21 second engineers were from the Grindavik area and were noticeably
young. Second engineers may share a cabin with the cook and/or second mate and receive the same wages as they do (1 and 1/4 share).

The second mate is more of a "first sailor" than second mate. His duties are, besides doing everything a regular deckhand must do, to steer the vessel whenever then skipper tells him to (usually the trip home). My impression is that the role of second mate may be primarily seen, on one hand, as an extra reward for a good deckhand, and on the other hand as a "luxury" for the skipper. As table 6 shows, only 9 out of the 21 boats had second mates. Also to be noticed is the fact that almost all of the second mates were recruited from the Grindavik area and that they were relatively young. The second mate may share a cabin with the cook or second engineer and receives the same wages as they do, one and one-fourth of a share.

TABLE 6:

<table>
<thead>
<tr>
<th>Age of 'officers' on cod-net boats in Grindavik 1984 by residence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Skippers:</td>
</tr>
<tr>
<td>Reykjavik area</td>
</tr>
<tr>
<td>Grindavik area</td>
</tr>
<tr>
<td>Other areas</td>
</tr>
<tr>
<td>First mates:</td>
</tr>
<tr>
<td>Reykjavik area</td>
</tr>
<tr>
<td>Grindavik area</td>
</tr>
<tr>
<td>Other areas</td>
</tr>
<tr>
<td>First engineers:</td>
</tr>
<tr>
<td>Reykjavik area</td>
</tr>
<tr>
<td>Grindavik area</td>
</tr>
<tr>
<td>Other areas</td>
</tr>
<tr>
<td>Second mates:</td>
</tr>
<tr>
<td>Reykjavik area</td>
</tr>
<tr>
<td>Grindavik area</td>
</tr>
<tr>
<td>Other areas</td>
</tr>
<tr>
<td>Second engineers:</td>
</tr>
<tr>
<td>Reykjavik area</td>
</tr>
<tr>
<td>Grindavik area</td>
</tr>
<tr>
<td>Other areas</td>
</tr>
<tr>
<td>Cooks:</td>
</tr>
<tr>
<td>Reykjavik area</td>
</tr>
<tr>
<td>Grindavik area</td>
</tr>
<tr>
<td>Other areas</td>
</tr>
</tbody>
</table>
TABLE 7:
Age of deckhands on cod-net boats in Grindavik 1984 by residence

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Reykjavik</td>
<td>5</td>
<td>23</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grindavik</td>
<td>3</td>
<td>25</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Other areas</td>
<td>8</td>
<td>36</td>
<td>7</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

The larger part of the labour force on the seasonal boats comes from outside of Grindavik. What is especially evident, is the fact that a overwhelming majority of the 'officers' lives in Grindavik, while the majority of the deckhands come from outside of the Grindavik area. The only group of 'officers' that are not mostly from Grindavik are the cooks. Their distribution within the age groups is also relatively even.

The most evident explanation for the dominance of young deckhands being recruited from outside of Grindavik is that outside of the winter season, the boats are engaged in a different type of fishing that does not require the same amount of labour. This, in turn, means that the 'excess' labour cannot find a basis for moving to Grindavik, because there are not enough alternative jobs for them during the summer (in Grindavik). Also, those wishing to make a career of fishing, are likely to strive towards moving into the better paid, higher status jobs on a year-round basis (which means moving to Grindavik). This in turn means that they will vacate the deckhand jobs and age within the other job groups. Besides this, one may consider the individual's life cycle. Young men are not as settled in their domestic situation as older men with larger families. They might, therefore, be more willing to leave their usual residence for the duration of the winter season.

Social relations

The life aboard the the bosts is noticeably egalitarian. Members of the crew all eat at the same table and receive the same food.

The dominating viewpoint is that of the deckhand. They constitute the largest group body aboard and most (if not all) of the others have been deckhands at some time or another, and have received their 'primary' education at sea as such.

There is a tendency to match stereotype traits to institutionalised roles. Duties are assigned to each role, but besides duties, personality traits are also assigned. The skipper is seen as a tyrant that always wants to go to sea more often and stay there longer than any other member of the crew. Even if the skipper is recognized as a fair man, who does not submit his crew to an unreasonable amount of labour, he is almost always referred to as a man who makes
the crew work more than is should. This does not mean that the crew is always mad at its skipper. It is the crew's duty to obey the skipper's "tyrannical" rule, just as it is the skippers's duty to rule alone.

The cook can in the same sense be accepted as a good cook even though the stereotype traits assigned to him, portray him as a lazy man that sleeps too much and makes "terrible food". The difference between making "terrible food" and factually terrible food will not go unnoticed by the crew. The complaints will not be restrained to the usual "straight-faced" joking manner but will become gravely serious and real complaints will be passed through different channels i.e. to the first mate or skipper (see page 57).

The role farthest removed from other roles aboard, must be the role of the chief engineer. The physical area, where most of his duties take place, is outside of the area where the fishing process takes place, even though some first mates do partake in the deckwork when they like. The chief engineer is in charge of the engine and uses his time according to his own discretion. When the deckhands are at work, they rarely know whether he is at work "down below" or if he is sleeping in his cabin. His specific duties rarely overlap with those of the men on deck. Their view of him, is that he is a lazy man that becomes proportionally less lazy, each time he gives a helping hand on deck.

JOKES, STORYTELLING AND SPECULATIVE DISCUSSION

The fisherman's environment is full of uncertainty, not knowing how large the catch will be and its value, nor how long the trip will take, how much sleep he will get, nor when he will see his family again. When no work is being done on the deck the main gathering place is the mess-room where the crew gathers to eat and talk and speculate about what decisions the skipper is going to take. The skipper rarely discloses his plans further than the next 'action'. Certain sequences of events give the skipper different possibilities of action. The crew is aware of these possibilities and uses them in it's speculation upon which decisions will be taken. To clarify this a few examples must be shown. If the nets have been set in two or three different areas, one area is farther away from port than the other(s). On the way there the skipper might haul a string (or some strings) from the nearest area before commencing to the area farthest away. This does not necessarily mean that he is not going to return to the first area and haul some more nets there. but if he, on the other hand, leaves the area farthest away without hauling all of the nets there, he most likely will not return to that area again during the same trip.

The information on which decisions are based is a broad spectrum of facts and news. The size and quality of the catch, the degree of difficulty in hauling the nets, the distance from the harbour, information from instruments, weather forecasts, information from other boats and time
consumed are all factors which affect the decisions.

These decisions will be taken by one of the crew, i.e. the skipper. But speculation is not confined to matters which are decided by people, such as the fishing abilities of certain strings. In much the same way as personality traits were assigned to institutionalised roles, certain traits were assigned to certain strings. For example, when hauling a string marked with a red flag ("the red string"), somebody might exclaim, - "there is never anything (no catch) in the red string." Someone else might then reply "no, and it always takes a long time to haul it, to." The traits assigned to the strings were not associated with the factual reasoning used by the skipper. I am not implying that the deckhands use no sort of reasoning, but merely pointing out that the deckhands do not have the same information as the skipper, who has monitored the area before setting the nets and has therefore knowledge of the facts relevant to the rational understanding of the degree of success and also keeps books with information on each string. What I am implying, is that during times of mediocre fishing success, those crewmembers that have insufficient information look for explanations derived from their own immediate surroundings.

Another evident aspect of the talk on board is the non-conversation or avoidance of topics relating to the crewmembers shore-life. Even though the younger crewmembers may talk amongst themselves about past events ashore, these are usually confined to descriptions of how they amused themselves drinking, dancing, fighting or "catching" girls. Topics such as family life are rarely spoken of except among men who have known each other for many years or are related in some way or another.

Jokes and stories

Storytelling is a popular pasttime. Almost all of the stories and jokes I have heard aboard boats relate to life at sea.

Beginners:

One day, in between strings, I started a discussion about joking with new-beginners. I asked if they had been joked with when they first went to sea. The second mate said that he had been told to gather all the garbage he could find. Having done this, he was told to run up to the skipper and fetch the key giving access to the keelswine.

He also told another story about a beginner on a boat he had been on once. (Seamen don't "work" on boats, they are "on" them) The boy was told to knock the fish out and then bleed them, being careful to save the blood in a bucket, because the cook was going to make "blood pancakes".

One boy was told to run down to the engine room and fetch a rope-pulling nail" (reipitogsnagl). Down in the engine room, the engineer, realizing the joke, gave the boy a huge clump of metal, weighing about 40-50 kg. When the
unfortunate boy had managed to drag it up to the deck, the skipper called to him that he best take it down again and put it in the engineer's bed.

One of the deck hands told a story of a boy that was told to cut up jellyfish and put them into a plastic bag because the cook was going to use them in a plum pudding.

Another was sent to wake the skipper. He was told that the skipper was a very heavy sleeper and that he would have to throw the door open and yell at the top of his voice "wake-up" ("ræs" = standard phrase for waking seamen). He did this and was almost run over by the "old man". The "old man" had jumped up "twang" and was on the bridge in a flash. He thought something had gone wrong, that the boat had run aground or something.

The second engineer told us that he had been sent to the skipper to fetch the (famous) "tangle-book". I myself was a victim of this same joke when I first went to sea in 1972.

These stories and others made everybody laugh and when we arrived at the next string, everybody was in a very good mood.

No jokes of this kind where played on our first-timer. He was taken with respect from the very first, being a "countryman" and used to hard work. Actually, he was very quick learning the job and also gained respect for the fact that, even though he was seasick in the beginning, he worked as hard as everyone else.

Dreams:
The first mate told me that we would catch 30 tons of fish next saturday. He told me that he knew this because "I met a man I know, I won't tell you who he is, but he has true dreams. He had a very good dream about us.

The second mate told me about one of the most famous Icelandic skippers. "He used to send information about the catch before he even reached the fishing grounds." The skipper added "He's like a skipper in some fairy tale; there's no doubt about it, he dreams where to catch the fish.
He was catching diamond-herring last spring while nobody else was getting anything (diamond-herring is herring of the highest class). And once he was catching capelin long after everybody else had given up."

Sleep stories:
The first mate told me these stories: "There was one (this seems to be a standard way to begin stories) that fell asleep with a cigarette in his bed and caught fire. They (meaning the crew) were terribly tired so he didn't wake up. His roommate didn't wake up either, but stood up in his sleep and extinguished the fire in his roommate's bed. He certainly wasn't death-bound, we had just finished cutting him from a string. (this means that he had gone overboard but been saved) Another time, during that same season the engineers had to fix something. One of them was laying on top of the engine and the other one underneath. They were doing some job in which they had to co-operate. After a
while, the skipper became impatient and went down to the engine to find out the reason for this delay. When he came down to the engine room he found both of the engineers asleep; one on top and one underneath the engine....Once while we were landing the fish we had to wait for an hour for a truck. I fell asleep leaning on a pick and another man fell asleep laying amongst the fish."

Obese jokes:
During bad weather following shoreleave it is quite common for even the most experienced seamen to become seasick or near to being seasick. At times like this it is quite common to hear jokes which are formulated to make others feel sick. Often, these jokes are told during mealtime.

INFORMATION CHANNELS AND SOCIAL CONTROL

The topics of conversation mentioned here earlier, are of common interest to the whole crew. Discussions relating to the engine and mechanical systems are confined to the engineers, which confer with the skipper or first mate when necessary. The information flow between the crew and its skipper is mostly indirect. The skipper does (of course) converse with his crew as one of them, but 'long-term' decisions are usually relayed through the first mate or cook, who have more direct access to him.

During the day, meals have to be served in time with the work cycle. On account of this, the cook may be entitled to information from the skipper as to what he has in mind. With this information acquired the cook may wish to discuss the mealtime planning with the first mate and deckhands. For example: The skipper might tell the cook that he is going to haul two more strings in this area and then sail to the next area. This gives the cook a chance to offer the crew an option on whether they would like to wait for their meal until after the next two strings and eat calmly, or eat quickly in between strings.

The talk and social relations onboard intertwine to make a two-way information flow possible. As mentioned before, the skipper decides where to fish and when to fish. His decisions are never directly criticized by any other crew members. The crew, though, may express discontent with his decisions amongst themselves in a very direct manner, e.g. "The damned old man is going to haul some more today", or "He's going to move them". In spite of this, the crew does have indirect channels of complaining to the skipper. If the crew feels that they are "really" being pressed to far or that the wrong decisions are being made, the skipper may find himself treated with an air of indifference. The usual small talk otherwise directed to him is terminated and the questions that he usually recieves are not asked. Visits to the bridge are not so frequent as usual and his lonesome job will be even more lonesome. The skipper, having been a deckhand himself, understands these hints and will have to
alter his decisions or somehow explain himself. (This may be
done indirectly. The explanation might also be "I have
decided to accept the actual role of 'tyrant'.")

Grievances and ideas may be transferred collectively
through the first mate, though some may rather wish to
discuss matters privately with the skipper. Two examples may
serve to clarify this: On one of my boats, the cook was not
performing his duties as he should. He made terrible food
and slept most of the time, besides being highly unsanitary.
The crew objected to this and after having gained no progress
at all by discussing the matter directly with the cook, the
crew discussed the matter seriously with the first mate
during fishing operations. The problem was not discussed
with the skipper collectively (in the mess-hall). I did,
however, discover later on, that two members of the crew had
discussed the matter in private with the skipper, even though
they did not tell this to the rest of the crew. Finally, the
first mate told the skipper about the crew's grievances and
the cook was fired.

On another boat, one of the deckhands had brought a
shotgun along to shoot birds. Two of the other deckhands
objected and told this to the first mate. As no one else
objected, the first mate felt that he could not relay this
objection as collective consensus to the skipper. So one of
the objecting deckhands went to the skipper and explained
that he thought that the shotgun was a danger to the rest of
the crew. The skipper went immediately to the shotgun owner,
took the gun and it was never mentioned again.

When the catch has been landed, the crew must wait to
find out when they are going to leave again. The skipper
bases this decision on a broad spectrum of information.
During the day he listens to conversations between different
skippers on the marine radios and converses, himself, with
the skippers of his choice or which have called him.
Information between boats about catch size is frequently
understated and most of the time the skippers are saying
something like "Oh, there's not so much over here, we haven't
seen any fish all day." I have never heard, nor heard of,
overstated information. One type of information which is
told straightforwardly, is information that has to do with
safety or direct loss, such as information about bad (rocky)
bottoms, wrecks or floating debris presenting danger to all
boats. Most of the boats (skippers) belong to a code group.
The code group uses codes to transfer information about catch
size (per string, net and total). So-called 'speaking under
a rose' is used frequently. 'Speaking under a rose' means
speaking in metaphors, often ones which have an undertone of
personal acquaintance. The 'tone' in somebody's voice can
also give certain information.

The skipper also has information gained from his own
investigations and past experience. And once the fish have
been landed his first mate usually accompanies the last truck
to 'the weight'. The weight is a state controlled
'institution' where all catches must be weighed before going
to the processors. Here the catch from each boat is
registered and open to public display. The first mate brings back news of the day's catches. On the bases of this news and other factors mentioned the skipper decides the departure time (with some certain strategy in mind) and tells the crew, which can then do as it wishes provided that their duties have otherwise been executed.

CONCLUSIONS

The winter season is an old institution that has adapted to new techniques to catch the same type of fish as before. When the nets were introduced during the late eighteenth century they were capital intensive, as well as highly productive and may have played a large roll in the transition of Icelandic society from an agrarian to a village type community.

Though more drastic, the flux in crewsize on the large boats in Grindavik is not a unique trait and may be found e.g. in Denmark (Moustrgaard & Damgaard 1974:58ff). The technique applied in the building of the boat and construction of its deck fixtures is decisive for the type of fishing the boat will be used for. Boats built for one certain type of fishing will not carry crews of a variable size. This statement is true, for example, in the case of the tuna-boats off the west coast of the USA (see Orbach 1977) and on the British deep-sea trawlers (see Tunstall 1969).

To enable crews of different sizes, often containing different individuals each season, to operate and control the fishing process, a certain degree of organisation is neccessary. On the cod-net boats in Grindavik this organisation is present in the work distribution, the work cycle and in the roll distribution. The fishing technique is intimitly intertwined with the work organisation and social system. The roll distribution ensures the continuity of the system.

Like in most other fishing cultures, the technique requires fast, sure teamwork. The share-system along with job-rotation ensures an even distribution of income in relation to labour hours and responsibility, thus provoking a sense of equality and leading to cooperation. Even the 'Tyrannical' rule of the skipper is based on the equalitarian idea that he was at least a deckhand sometime earlier. His total power also relieves other crewmembers from making decisions concerning the whole crew and so minimizes conflicts.

The crew as a whole can be classified into two groups: officers and deckhands. Definate traits of the officers, besides receiving higher wages and working more hours, are that they are more often residents of the Grindavik area, older and they have easier access to information. The deckhands on the contrary, are usually younger non-residents and have poor access to information. At the end of the winter season most of the deckhands, lacking occupations, leave and new ones are recruited next season.
Even though the flux in crew size may, in the contemporary situation, be explained by the seasonal changes in fishing technique other reasons must be taken into account. Before the introduction of cod-nets the fishing technique was the same all the year round. It may be suggested here, that there may be other factors governing the flux in crew size. Besides the lesser ability to cope with fish exporting, the old agrarian society only had surplus labour during the winter-season. And, besides being the most difficult time for rowing boats, it is when the cod comes to its spawning grounds.
Litterature

Unpublished

Gunnarsson, Ragnar J. 1981
Greinargró um Grindavík : Reykjavík Planning Bureau
Official crew registration books 1984 in Grindavík.

Pálsson, Gíslason & Durrenberger, E. Paul 1983
Peasants, Entrepreneurs, and Companies: The Evolution of Icelandic Fishing.

Sæmundur Tómasson's notes (born 1888): in Custody of the National Museum of Iceland.

Published

Acheson, J.M. 1981

Andersen, Raoul & Wadel, Cato 1979

Joensen, Jóán Pauli 1975
Færøske Sluppfiskere Tórshavn: CWK Gleerups, Lund

Kristjánsson, Lúðvík 1980
Islenzkir Sjávarhættir, 1. Reykjavík: Menningarsjóður.

Kristjánsson, Lúðvík 1982
Islenzkir Sjávarhættir, 2. Reykjavík: Menningarsjóður.

Maio, J.R. & Orbach, M.K. (eds.) 1982

Nokkrir Menn í Rvk og á Slitjnesi 1892
M konferensr. Steph og Gnrd bondi Gmdssn um Dórskanetin. Reykjavík

Orbach, Micheal 1977
Hunters, Seamen and Entrepreneurs: The Tuna Seamen of San Diego Berkeley: University of Calif. Press.
Olavíus, Olafr 1771
Stutt ágrip um fiskiveiðar Copenhagen.

Sigurðsson, Jón 1859
Litil Fiskibók Copenhagen

Smith, M.E (ed.) 1977

Statistical Bureau of Iceland
Statistics of Iceland 1930-1980 Reykjavík

Tunstall, J. 1969

Pórsteinsson, Guðni 1962
Íslensk Veiditækni Reykjavík

Pórsteinsson, Guðni 1980
Veidar og Veidarfæri Reykjavík: Almenna Bókafélagið.

Egir no.6 1918
Reykjavík.

CORRECTION:

Moustgaard/Damgaard 1974
Garnfiskere: Organisation og teknologi i et vestjysk konsumfiskeri Esbjerg